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Reflection of circumferential modes in
a choked nozzle
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Small perturbations of a choked flow through a thin annular nozzle are investigated.
Two cases are considered, corresponding to a ‘choked outlet’ and a ‘choked inlet’
respectively. For the first case, either an acoustic or entropy or vorticity wave is
assumed to be travelling downstream towards the nozzle contraction. An asymptotic
analysis for low frequency is used to find the reflected acoustic wave that is created.
The boundary condition found by Marble & Candel (1977) for a compact choked
nozzle is shown to apply to first order, even for circumferentially varying waves. The
next-order correction can be expressed as an ‘effective length’ dependent on the mean
flow (and hence the particular geometry of the nozzle) in a quantifiable way.

For the second case, an acoustic wave propagates upstream and is reflected from a
convergent–divergent nozzle. A normal shock is assumed to be present. By considering
the interaction of the shock’s position and flow perturbations, the reflected propa-
gating waves are found for a compact nozzle. It is shown that a significant entropy
disturbance is produced even when the shock is weak, and that for circumferential
modes a vorticity wave is also present. Numerical calculations are conducted using a
sample geometry and good agreement with the analysis is found at low frequency in
both cases, and the range of validity of the asymptotic theory is determined.

1. Introduction
For choked outlet nozzles, Marble & Candel (1977) used a linear analysis to

find a boundary condition that may be applied to perturbations. Their analysis was
one-dimensional and the nozzle dimensions were assumed small compared with the
shortest wavelength of the perturbed flow. The case of three-dimensional disturbances
was investigated by Crocco & Sirignano (1967). However they assumed a similarity
form which excludes the present thin annular geometry. For a compact choked inlet,
attention has often been restricted to the case of a weak shock followed by smooth area
increase. It has then been assumed (see for example Bloxsidge, Dowling & Langhorne
1988) that entropy perturbations are negligible leading to a simple reflection coefficient
for plane acoustic waves. However in § 4 we show that this assumption is incorrect.
The main purpose of this work is to derive the appropriate boundary conditions for
choked inlet and outlet nozzles when circumferentially varying modes are present and
to test them by comparison between analytical and numerical results.

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from
gas turbines, but often leads to combustion instability. Acoustic waves produce
fluctuations in heat release, for instance by perturbing the fuel–air ratio or flame
shape. These heat fluctuations will in turn generate more acoustic waves and in
some situations self-sustained oscillations can result. It is therefore important to be
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able to predict resonant modes. To do this it is necessary to know the boundary
conditions that apply at the inlet and outlet of the combustor. For short annular
combustors, typical of aeroengines, circumferential modes must be considered but
radial dependence is not important. The aim of this paper is to find the boundary
conditions that apply to flow perturbations at a choked inlet and a choked outlet for
a thin annular geometry.

In § 2 we show that a linear disturbance in a straight annular duct can be thought
of as a sum of acoustic, entropy and vorticity waves, with acoustic waves propagating
both upstream and downstream, while entropy and vorticity disturbances convect with
the mean flow. The equations presented there are required in forming the boundary
conditions at the inlet and outlet of the nozzle in the subsequent sections.

Section 3 contains an asymptotic analysis of a choked outlet nozzle for low fre-
quency. To first order the boundary condition for linear perturbations is found to
agree with the Marble & Candel (1977) form for one-dimensional waves. Extend-
ing the boundary condition to second-order in compactness ratio (the product of
wavenumber and nozzle length) the solution is found to depend on the mean flow.
These boundary conditions are used to find the acoustic wave reflected when a
downstream-propagating acoustic or a convected entropy or vorticity wave is incident
on the nozzle. The results are expressed in the form of a reflection coefficient and an
‘effective length’ for the nozzle in terms of the mean flow.

In § 4 we consider a compact convergent–divergent choked inlet nozzle with a
normal shock in the divergent section. Now the interest is the determination of the
downstream-travelling acoustic, vorticity and entropy waves produced by an incident
upstream-propagating acoustic wave. We show that the boundary condition often
used for a weak shock followed by smooth area increase is incorrect. We find new
boundary conditions, that apply even without these assumptions, by considering the
interaction of the shock position and the perturbed flow.

In § 5 we present numerical results for a particular choked nozzle. Here the mean
flow is assumed axisymmetric with no circumferential velocity and is calculated
numerically using an Euler code. A linearized Euler technique is then used to calculate
small perturbations to this flow. First, the reflected acoustic wave is found when a
downstream-travelling acoustic, entropy or vorticity wave is incident on a choked exit
nozzle. Secondly, the downstream-travelling acoustic wave produced by an upstream-
propagating acoustic wave incident on a choked inlet nozzle is calculated. Good
agreement is found between the numerical and analytical results.

2. Analysis for a straight annular duct
We consider the form of perturbations that can occur in the gap between two

concentric cylinders. We first consider the general form, before investigating the case
when the gap is narrow.

2.1. General form

Using cylindrical polar coordinates x, r and θ, we are interested in a straight annular
duct of the form b > r > a > 0. The flow through this duct is assumed to be inviscid,
with pressure p, density ρ and velocity u = (u, v, w). This flow is taken to be composed
of a steady axial mean flow (denoted by bars) and a small perturbation (denoted
by primes). These disturbances are assumed to have complex frequency ω (i.e. the
temporal dependence is of the form eiωt). We will restrict attention to real ω (although
extension to complex ω is straightforward) and we may take ω to be positive without
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loss of generality. Also, the angular dependence of the perturbations is taken to be
of the form einθ (where n is a non-negative integer). Since v̄ = w̄ = 0 for the uniform
mean flow, the continuity equation for the perturbations becomes

iωρ′ + ū
∂ρ′

∂x
+ ρ̄

∂u′

∂x
+ ρ̄

∂(rv′)
∂r

+ inρ̄w′ = 0, (2.1)

and momentum equations for the perturbations become

iωρ̄u′ + ρ̄ū
∂u′

∂x
= −∂p

′

∂x
, (2.2a)

iωρ̄v′ + ρ̄ū
∂v′

∂x
= −∂p

′

∂r
, (2.2b)

iωρ̄w′ + ρ̄ū
∂w′

∂x
= − in

r
p′. (2.2c)

In the absence of viscosity and heat conduction the equation for entropy, S =
cv log p/ργ , is DS/Dt = 0. For the entropy perturbation, S ′ = cvp

′/p̄ − cpρ′/ρ̄, this
gives

iωS ′ + ū
∂S ′

∂x
= 0 (2.3)

(hence any variations in entropy at the inlet of the duct will be convected with the
mean flow). The equation for vorticity, ξ, is D(ξ/ρ)/Dt = [(ξ/ρ) · ∇]u (see Batchelor
1967). For the mean ξ̄ = 0, hence

iωξ′ + ū
∂ξ′

∂x
= 0 (2.4)

(so vorticity variations are also convected).
If we first consider only isentropic irrotational disturbances (S ′ = 0, ξ′ = 0), the

perturbations are acoustic waves with the form

p′ = A±eiωt+inθ+ik±xBn(r), (2.5a)

ρ′ =
1

c̄2
A±eiωt+inθ+ik±xBn(r), (2.5b)

u′ = − k±
ρ̄α±

A±eiωt+inθ+ik±xBn(r), (2.5c)

v′ =
i

ρ̄α±
A±eiωt+inθ+ik±xdBn

dr
(r), (2.5d)

w′ = − n

rρ̄α±
A±eiωt+inθ+ik±xBn(r) (2.5e)

(see Eversman 1994; Tyler & Sofrin 1962). Here c̄ is the mean speed of sound,

Bn(r) =
dYn
dr

(λn,mb)Jn(λn,mr)− dJn
dr

(λn,mb)Yn(λn,mr), α± = ω + ūk±

and

c̄k± =
Mω ∓ [ω2 − c̄2λ2

n,m(1−M2)]1/2

1−M2
, (2.6)
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where M is the mean Mach number (which is assumed to be less than unity) and
λn,m > 0 is the (m+ 1)th solution of

dJn
dr

(λn,ma)
dYn
dr

(λn,mb) =
dJn
dr

(λn,mb)
dYn
dr

(λn,ma)

required to satisfy the rigid wall boundary condition on r = a and r = b. When
ω > c̄λn,m(1−M2)1/2, A+ represents a downstream-propagating wave and A− represents

an upstream-propagating wave. For ω < c̄λn,m(1−M2)1/2 the waves are ‘cut off’; A+

then represents a downstream-decaying disturbance and A− represents an upstream-
decaying disturbance.†

We now consider an entropy disturbance by allowing S ′ to be non-zero (but keeping
ξ′ = 0). Setting p′ = 0, equations (2.1)–(2.4) imply the perturbations are an entropy
wave of the form

ρ′ = − 1

c̄2
AEeiωt+inθ+ik0xE(r), (2.7)

with p′ = u′ = v′ = w′ = 0, where k0 = −ω/ū and E(r) can be any function
of r. (If we do not set p′ = 0, we still have this entropy wave but the acoustic
waves described above are also present.) Lastly we consider a vorticity disturbance,
i.e. ξ′ is non-zero (with S ′ = 0). Taking p′ = 0 again, we find that ρ′ = 0 and
u′ = (u∗(r), v∗(r), w∗(r))eiωt+inθ+ik0x, where ik0u

∗ + (1/r)∂(rv∗)/∂r + (in/r)w∗ = 0. There
are two degrees of freedom here. The solution can be thought of as a sum of two
types of vorticity wave, one where the radial velocity is zero and one where the
circumferential velocity is zero. The first type has the form

u′ =
n

ρ̄c̄
AV eiωt+inθ+ik0xV (r), (2.8a)

w′ = −k0r

ρ̄c̄
AV eiωt+inθ+ik0xV (r), (2.8b)

with p′ = ρ′ = v′ = 0, whereas flow perturbations in the second type can be expressed
as

u′ =
1

ρ̄c̄r
AW eiωt+inθ+ik0x

dW

dr
(r), (2.9a)

v′ = − ik0

ρ̄c̄r
AW eiωt+inθ+ik0xW (r), (2.9b)

with p′ = ρ′ = w′ = 0. Here V (r) can be any function; however we must have
W (a) = W (b) = 0. (Similar to the entropy case, if we do not set p′ = 0 we still have
these vorticity waves but acoustic waves are also present.) Any flow perturbation
can be expressed as a sum of the acoustic waves, entropy waves and vorticity waves
described above.

2.2. Narrow annular gap

For the numerical scheme in § 5 the equations above (including the Bessel functions
Bn(r)) are used when formulating boundary conditions. However for the analysis in
§§ 3 and 4, a narrow annular gap assumption is used which simplifies the results.
We write b = a(1 + ε) and consider ε � 1. Provided n � ε−1 it can be shown that
λn,0 = n/R+O(ε)2, where R = 1

2
(a+b), whereas λn,m = mπ/(b−a)+O(ε) for m > 1 (see

the Appendix). Hence if ω < (1−M2)1/2πc̄/(b− a) then the second and higher radial

† Note that the square root in (2.6) is taken to be a negative imaginary number in this case.
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Figure 1. Schematic diagram of the choked outlet nozzle.

modes (m > 1) will be cut off. If there is a source of such radial modes, then at a
distance ∆x away they will be negligible if say ω2 < [πc̄/(b−a)]2(1−M2)− [3c̄/(∆x)]2,
since the modes will be highly cut off and decay rapidly away from the source. Hence
in such a situation we need only consider m = 0. Also it is not appropriate to
consider n of order ε−1; physically this is equivalent to saying that the circumferential
wavelength should not be comparable with the radial gap.

3. Asymptotic analysis for a choked outlet nozzle
As well as the compact case, Marble & Candel (1977) also considered perturbations

to choked flow when the wavelengths are comparable with the nozzle geometry.
They assumed both the mean flow and the perturbations to be one-dimensional
and approximated the mean velocity by a linear function. Here we extend their
analysis by allowing the mean velocity to be a general function of x and considering
circumferentially varying perturbations.

We consider an axisymmetric nozzle 0 < x < xmax, rmin(x) < r < rmax(x), as shown
schematically in figure 1. We suppose that there is a section at the inlet where the
nozzle is simply the gap between two concentric cylinders as considered in § 2, i.e.
rmin(x) = a, rmax = b. After this the cross-sectional area of the nozzle decreases to a
throat at x = x∗ before increasing again (see § 5 for a particular example). The mean
flow through the nozzle is assumed to be choked, with ū = ū(x) a known function
(perhaps taken from steady numerical calculations as described in § 5) and v̄ = w̄ = 0.
Letting L be a typical axial length scale of the nozzle and writing X = x/L, we take
the perturbed flow to be of the form

p′

γp̄
= p̂(X) eiωt+inθ,

ρ′

ρ̄
= ρ̂(X) eiωt+inθ, (3.1a)

u′

ū
= û(X) eiωt+inθ,

w′

c̄in
= ŵ(X) eiωt+inθ (3.1b)
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(where subscript ‘in’ denotes values at the inlet) with v′ = 0. We also make ω
non-dimensional by taking Ω = Lω/c̄∗ (where subscript ‘∗’ denotes values at the
throat). We consider h(x) = rmax(x) − rmin(x) to be small compared to rmax(x) and
hence take r ≈ R = 1

2
(a+ b). Quantitatively, § 2.2 implies that in order for the radial

dependence of the perturbations to be negligible we need h to be sufficiently small that
Ω2 < (c̄/c̄∗)2[(πL/h)2(1−M2)−9]. Section 2.2 also suggests that it is only appropriate
to consider n� R/h. We use the narrow annular gap form of the Euler equations in
which the continuity equation has the form

∂

∂t
(ρh) +

∂

∂x
(ρuh) +

1

R

∂

∂θ
(ρwh) = 0. (3.2)

For linear perturbations this leads to

iΩρ̂+U
dρ̂

dX
+U

dû

dX
+ iΩcŵ = 0, (3.3)

where Ωc = Lnc̄in/(Rc̄∗) and U(X) = ū(x)/c̄∗ (hence U(X∗) = 1). The x-momentum
equation for the narrow annular gap is

∂u

∂t
+ u

∂u

∂x
+
w

R

∂u

∂θ
+

1

ρ

∂p

∂x
= 0. (3.4)

The linearized form of this is

iΩû+U
dû

dX
+

dU

dX
(2û+ ρ̂) + (c̄2/c̄2

∗)U
−1 dp̂

dX
+ γp̂

dp̂

dX
L/(ρ̄ūc̄∗) = 0. (3.5)

Substituting from the mean form of the axial-momentum equation, dp̄/dx =
−ρ̄ū dū/dx, and the steady-flow relationship, c̄2 = 1

2
(γ+1)c̄2∗− 1

2
(γ−1)ū2, this simplifies

to

iΩû+U
dû

dX
+ 1

2
[(γ + 1)− (γ − 1)U2]U−1 dp̂

dX
+

dU

dX
(2û+ ρ̂− γp̂) = 0. (3.6)

The θ-momentum equation here is

∂w

∂t
+ u

∂w

∂x
+
w

R

∂w

∂θ
+

1

ρr

∂p

∂θ
= 0, (3.7)

and linearizing this leads to

iΩŵ +U
dŵ

dX
+ 1

2
iΩc(c̄∗/c̄in)2[(γ + 1)− (γ − 1)U2]p̂ = 0. (3.8)

The flow through the nozzle is assumed to be adiabatic. Therefore, upstream of any
shocks, entropy is simply convected,

∂S

∂t
+ u

∂S

∂x
+
w

R

∂S

∂θ
= 0. (3.9)

For linear disturbances this leads to

iΩ(p̂− ρ̂) +U

(
dp̂

dX
− dρ̂

dX

)
= 0. (3.10)

Our aim is to investigate the axial development of these linear perturbances and there
is a particularly concise form for that development in terms of the perturbation in
Mach number. To derive this form we multiply (3.6) by 2U then subtract 2U−1 times
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(3.3) and U +U−1 times (3.10), giving

iΩ[U(2û+ ρ̂− p̂)−U−1(p̂+ ρ̂+ 2µŵ)]

+ 2U
dU

dX
(2û+ ρ̂− γp̂) + (U2 − 1)

(
2

dû

dX
+

dρ̂

dX
− γ dp̂

dX

)
= 0, (3.11)

where µ = Ωc/Ω.
We now consider an asymptotic expansion for small Ω,

p̂ = p̂0 + iΩp̂1 + O(Ω2), ρ̂ = ρ̂0 + iΩρ̂1 + O(Ω2), (3.12a)

û = û0 + iΩû1 + O(Ω2), ŵ = ŵ0 + iΩŵ1 + O(Ω2). (3.12b)

(Since we will be assuming that Min is small, c̄∗ ≈ [2/(γ + 1)]1/2c̄in and so Ω being
small is equivalent to the nozzle geometry being compact, i.e. short compared to
c̄in/ω.) Substituting (3.12) into (3.11) leads to

d

dX
[(1−U2)(2û0 + ρ̂0 − γp̂0)] = 0, (3.13)

thus in order to avoid a singularity at the throat we must have that

2û0 + ρ̂0 − γp̂0 = 0. (3.14)

This is equivalent to Marble & Candel’s boundary condition for a compact choked
nozzle, obtained by considering the fractional mass flow (see Marble & Candel 1977).
From (3.3) and (3.6)–(3.10) we also find that p̂0, ρ̂0, û0 and ŵ0 are all constant.
The expression 2û+ ρ̂− γp̂ is proportional to the perturbation in the Mach number
and so the boundary condition can simply be deduced from the fact that, for a
time-independent disturbance, the Mach number remains purely a function of the
cross-sectional area (provided the flow stays choked). To next order, (3.11) gives

d

dX
[(1−U2)(2û1 + ρ̂1 − γp̂1)] = U(2û0 + ρ̂0 − p̂0)−U−1(p̂0 + ρ̂0 + 2µŵ0) (3.15)

and hence

2û1 + ρ̂1 − γp̂1 =
p̂0 + ρ̂0 + 2µŵ0

1−U2

∫ X∗

X

U−1 dX − (γ − 1)p̂0

1−U2

∫ X∗

X

U dX. (3.16)

At x = 0 we therefore have the boundary condition

2û(0) + ρ̂(0)− γp̂(0) = iΩ

(
p̂0 + ρ̂0 + 2µŵ0

1−U2
I1 − (γ − 1)p̂0

1−U2
I2

)
+ O(Ω2), (3.17)

where I1 =
∫ X∗

0
U−1 dX and I2 =

∫ X∗
0
U dX.

An interesting question to ask is whether we can incorporate this O(Ω) correction
by simply approximating the nozzle by a straight duct, length l say, and applying
the boundary condition 2û + ρ̂ − γp̂ = 0 at the end. This would give an ‘effective
length’ for the nozzle which could be useful in applying acoustic models to industrial
problems involving choked outlet pipes. We consider a flow along a straight duct
0 < x < l, rmin(0) < r < rmax(0), such that the mean flow and perturbations at x = 0
are the same as for the nozzle flow above. Denoting this new flow by superscript ‘*’,
U∗(0) = U(0), p̂∗(0) = p̂(0), etc. and since the duct is straight U∗(X) ≡ U(0). In the
same way as before, p̂∗0, ρ̂∗0, û∗0 and ŵ∗0 are constant and so are equal to the values for
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the nozzle flow. Equation (3.15) also applies to the new flow, leading to

[2û∗1 + ρ̂∗1 − γp̂∗1]l̂0 = − p̂0 + ρ̂0 + 2µŵ0

1−U(0)2
U(0)−1 l̂ +

(γ − 1)p̂0

1−U(0)2
U(0)l̂, (3.18)

where l̂ is the non-dimensional length l/L. Combining this with (3.17), we find that

2û∗(l̂) + ρ̂∗(l̂)− γp̂∗(l̂)

= iΩ

(
p̂0 + ρ̂0 + 2µŵ0

1−U2
[I1 −U(0)−1 l̂]− (γ − 1)p̂0

1−U2
[I2 −U(0)l̂]

)
, (3.19)

ignoring O(Ω2). Hence the appropriate effective length is

l =
(p̂0 + ρ̂0 + 2µŵ0)I1 − (γ − 1)p̂0I2

(p̂0 + ρ̂0 + 2µŵ0)U(0)−1 − (γ − 1)p̂0U(0)
L, (3.20)

giving the boundary condition

2û∗(l̂) + ρ̂∗(l̂)− γp̂∗(l̂) = O(Ω2). (3.21)

U is small near the inlet and so we expect I1 to be much larger than I2. Hence unless
|p̂0 + ρ̂0 + 2µŵ0| � |p̂0|, a good approximation is given by

l = U(0)I1L =

∫ x∗

0

ū(0)

ū(x)
dx, (3.22)

which may be interpreted as the mean velocity at the inlet multiplied by the convection
time to the throat. In the following sections we apply the above results to find the
reflection coefficient for a downstream acoustic wave, an entropy wave or a vorticity
wave at the inlet (see figure 1), and discuss the validity of (3.22).

3.1. Incident acoustic wave

We now consider the acoustic wave reflected as a result of a downstream-propagating
acoustic wave incident on the nozzle (with no entropy or vorticity waves). Well
upstream of the nozzle the mean flow will be approximately uniform and so (2.5) will
apply.

We are assuming that the annular gap is sufficiently narrow that radial modes
are highly cut off and can be ignored. Hence we should only consider m = 0 with
λn,0 = n/R (see § 2.2). Also, since the gap is narrow we may set Bn(r) ≡ 1. Combining
(2.5a) and (2.5c) gives the (pressure) reflection coefficient to be

A−
A+

= − (c̄k+/α+)p̂(0) +Mû(0)

(c̄k−/α−)p̂(0) +Mû(0)
, (3.23)

where c̄ and M denote the speed of sound and mean flow Mach number in the
straight-walled annular region upstream of the nozzle. Equation (2.5) may also be
applied to the straight-duct flow considered above when finding the effective length.
Hence in a similar way

A−eik−l

A+eik+l
= − (c̄k+/α+)p̂∗(l̂) +Mû∗(l̂)

(c̄k−/α−)p̂∗(l̂) +Mû∗(l̂)
. (3.24)

From (2.5), ρ̂(0) = p̂(0) and ρ̂∗(l̂) = p̂∗(l̂). Therefore (3.17) implies that û(0) =
1
2
(γ−1)p̂(0) to O(Ω), whereas (3.21) gives û∗(l̂) = 1

2
(γ−1)p̂∗(l̂) to O(Ω2). The reflection
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coefficient is therefore

A−
A+

= − (c̄k+/α+) + 1
2
(γ − 1)M

(c̄k−/α−) + 1
2
(γ − 1)M

+ O(Ω)

= − (c̄k+/α+) + 1
2
(γ − 1)M

(c̄k−/α−) + 1
2
(γ − 1)M

ei(k+−k−)l + O(Ω2). (3.25)

For the simplified expression (3.22) for the effective length to be valid we required
that |p̂0 + ρ̂0 + 2µŵ0| 6� |p̂0|. For the present case of purely acoustic waves, since
α± = ω + O(M) it follows from (2.5e) that ŵ = −µp̂ + O(M). Hence the restriction
becomes |1 − µ2| 6� 1, implying that for n = 0 (3.22) is always valid whereas for
non-zero n it is valid except close to the cut-off frequency (i.e. µ ≈ 1).

3.2. Entropy wave

Since we are assuming r ≈ R we should take Bn(r) and E(r) in (2.7) to be uniform, and
for simplicity we take them to be equal to unity. We now define a reflection coefficient
for the case of an entropy wave at the inlet to be A−/AE . (This is the reflection

coefficient based on density.) Since A+ = 0, (2.5) gives that Mû∗(l̂) = −(c̄k−/α−)p̂∗(l̂)
and so from (3.21), Mρ̂∗(l̂) = [2(c̄k−/α−) + γM]p̂∗(l̂) to O(Ω2). From (2.5) and (2.7)
we find that

A−
AE

=
p̂∗(l̂) e−ik−l

[p̂∗(l̂)− ρ̂∗(l̂)] e−ik0l
= −

1
2
M

(c̄k−/α−) + 1
2
(γ − 1)M

ei(k0−k−)l + O(Ω2). (3.26)

Since ρ̂/p̂ = O(M−1), |p̂0 + ρ̂0 + 2µŵ0| 6� |p̂0| and so (3.22) is always valid for the
entropy wave case.

3.3. Vorticity wave

As we are assuming a negligible radial dependence, we should only consider vorticity
waves of the first type, as given by (2.8), and for simplicity we take V (r) ≡ Bn(r) ≡ 1.
We define the reflection coefficient here to be (c̄k−/α−)A−/(nAV ). (This is the reflection

coefficient based on axial velocity.) As in § 3.1, ρ̂∗(l̂) = p̂∗(l̂) and û∗(l̂) = 1
2
(γ−1)p̂∗(l̂) +

O(Ω2). From (2.5) and (2.8) we have

c̄k−A−
nα−AV

=
(c̄k−/α−)p̂∗(l̂) e−ik−l

[(c̄k−/α−)p̂∗(l̂) +Mû∗(l̂)] e−ik0l

=
c̄k−/α−

(c̄k−/α−) + 1
2
(γ − 1)M

ei(k0−k−)l + O(Ω2). (3.27)

From (2.5) and (2.8) we find that ŵ/p̂ = O(M−1), hence |p̂0 + ρ̂0 + 2µŵ0| 6� |p̂0|
meaning that (3.22) is always valid for the vorticity wave case.

4. Analysis for a choked inlet nozzle
We now consider the reflected waves created when an upstream-propagating acous-

tic wave approaches a choked inlet nozzle (see figure 2). As before we assume that the
nozzle is thin and annular, and that the cross-sectional area of the nozzle decreases
to a throat before increasing again. At its outlet the nozzle is simply the gap between
two concentric cylinders. We assume that a normal shock is present in the divergent
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Figure 2. Schematic diagram of the choked inlet nozzle.

section of the nozzle. Since no upstream-propagating wave can travel across this
shock and we assume that there are no inlet disturbances approaching the shock
from upstream, there are no flow perturbations ahead of the shock. Behind the shock
we assume there is the upstream-propagating acoustic wave and we wish to deter-
mine the downstream-travelling acoustic, vorticity and entropy waves generated in
response to this incident disturbance. To find these downstream-travelling waves we
must consider the interaction between the flow disturbances and the position of the
shock. This is very similar to the work by Kuo & Dowling (1996) on oscillations of a
supersonic jet impinging upon a flat plate. We take the shock to be at x = xs = x̄s+x

′
s.

Since the perturbation in the shock position is caused by the upstream acoustic wave,
it will have the form x′s = σeiωt+inθ , where σ is a constant describing the amplitude
of the shock displacement. Since we are considering linear perturbations, order σ2 is
negligible. At the shock

c1(xs) = c̄1(x̄s) + x′s
dc̄1

dx
(x̄s), M1(xs) = M1(x̄s) + x′s

dM1

dx
(x̄s), (4.1)

where subscript ‘1’ denotes values just ahead of the shock. (Here we have used
the fact that the perturbations ahead of the shock are zero and so in particular
c′1(x̄s) = M ′

1(x̄s) = 0.) Using subscript ‘sh’ to denote values in a frame of reference
where the shock is stationary,

c1,sh = c1 = c̄1 + x′s
dc̄1

dx
, M1,sh = M1 − 1

c1

dxs
dt

= M1 + x′s

(
dM1

dx
− iω

c̄1

)
. (4.2)

We assume that separation does not occur upstream of nor immediately after the
shock. For the mean flow both ahead of and behind the shock, the one-dimensional
flow equation shows that c̄2 = c̄2

0[1 + 1
2
(γ − 1)M2]−1, where subscript ‘0’ denotes
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stagnation values. Hence

dc̄

dx
= −

1
2
(γ − 1)Mc̄

1 + 1
2
(γ − 1)M2

dM

dx
. (4.3)

The usual Rankine–Hugoniot shock relations apply in the frame of reference where
the shock is stationary and, in particular,

u1,sh

u2,sh

=
1
2
(γ + 1)M2

1,sh

1 + 1
2
(γ − 1)M2

1,sh

, (4.4)

where subscript ‘2’ denotes values just behind the shock; therefore

u2,sh = c1,sh

1 + 1
2
(γ − 1)M2

1,sh

1
2
(γ + 1)M1,sh

= ū2 − x′s 2c̄1

(γ + 1)M2
1

(
dM1

dx
− [1− 1

2
(γ − 1)M2

1]
iω

c̄1

)
(4.5)

(cf. Kuo & Dowling 1996). Returning to the original frame of reference,

u2 = u2,sh +
dxs
dt

= ū2 − x′s 2c̄1

(γ + 1)M2
1

(
dM1

dx
− (1 +M2

1)
iω

c̄1

)

= ū2 + u′2 + x′s
dū2

dx
= ū2 + u′2 + x′s

c̄2

1 + 1
2
(γ − 1)M2

2

dM2

dx
. (4.6)

By considering the mass flux through the nozzle

1

A

dA

dx
=

M2
1 − 1

M1[1 + 1
2
(γ − 1)M2

1]

dM1

dx
=

M2
2 − 1

M2[1 + 1
2
(γ − 1)M2

2]

dM2

dx
, (4.7)

where A is the cross-sectional area. Hence, defining û as before, just after the shock
we have

û = − σ

M1[1 + 1
2
(γ − 1)M2

1]

[(
1 +

M2
1 − 1

M2
2 − 1

)
dM1

dx
− (1 +M2

1)
iω

c̄1

]
. (4.8)

In a similar way we also find that just after the shock

p̂ =
σ

M1[1 + 1
2
(γ − 1)M2

1]

[(
M2

1

γ + 3− 2M2
1

2γM2
1 − (γ − 1)

+M2
2

M2
1 − 1

M2
2 − 1

)

×dM1

dx
− 2M2

1[2 + (γ − 1)M2
1]

2γM2
1 − (γ − 1)

iω

c̄1

]
, (4.9)

ρ̂ =
σ

M1[1 + 1
2
(γ − 1)M2

1]

[(
2−M2

1 +M2
2

M2
1 − 1

M2
2 − 1

)
dM1

dx
− 2

iω

c̄1

]
(4.10)

and w′ = 0. Using a similar procedure to that above, Culick & Rogers (1983)
considered the interaction of a shock in a choked inlet with one-dimensional flow
perturbations. They only calculated the admittance immediately after the shock and
hence did not need to consider whether an entropy perturbation is present. They also
did not investigate the effect of the area increase following the shock. The admittance
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function calculated using (4.8) and (4.9) is equivalent to their result (except for a
typographical error†).

In the following we will assume that the nozzle is compact and hence ignore the
ω/c̄1 terms above. (This is equivalent to considering only the first-order terms in
an expansion similar to (3.12).) We now consider three fluxes along the nozzle: the
mass flux, m = Aρu, the angular-momentum flux, fθ = Rmw, and the energy flux,
e = Aγpu/(γ−1)+m( 1

2
u2 + 1

2
w2). By considering the perturbations of these we find that

m′ = m̄(ρ̂+û), f′θ = Rm̄w′ and (γ−1)e′ = [1+ 1
2
(γ−1)M2]c̄2m′+c̄2m̄[γp̂−ρ̂+(γ−1)M2û].

Applying (4.8)–(4.10) and using the shock relation

M2
2 =

1 + 1
2
(γ − 1)M2

1

γM2
1 − 1

2
(γ − 1)

(4.11)

give that m′ = f′θ = e′ = 0 just after the shock.
We must now consider the effects of the increase in nozzle cross-sectional area

between the shock and the straight outlet. By considering a thin sector of the nozzle,
it can be seen that the fluxes m, fθ and e are all conserved across this increase in
area, assuming it is compact. Hence m′ = f′θ = e′ = 0 also at the outlet, and so
ρ̂ + û = w′ = γp̂ − ρ̂ + (γ − 1)M2û = 0. We now use (2.5), (2.7) and (2.8) to find the
reflected downstream acoustic wave, entropy wave and vorticity wave created by the
upstream acoustic wave. Since γp̂− [1 + (γ − 1)M2]ρ̂ = 0, the entropy wave is given
by

AE =
(γ − 1)(1−M2)

1 + (γ − 1)M
(A− + A+), (4.12)

and using w′ = 0, the vorticity wave is given by

AV = − nc̄

R2k0

(
A−
α−

+
A+

α+

)
. (4.13)

Here R is the mean radius at the outlet, and as before we have taken E(r) = V (r) =
Bn(r) = 1 and m = 0 with λn,0 = n/R. Also, from γp̂ + [1 + (γ − 1)M2]û = 0 we find
that the reflection coefficient for the downstream acoustic wave is

A+

A−
= − (c̄k−/α−)− [n2c̄/(R2k0α−)]− γM/[1 + (γ − 1)M2]

(c̄k+/α+)− [n2c̄/(R2k0α+)]− γM/[1 + (γ − 1)M2]
. (4.14)

As well as the reflected acoustic wave, we see that an entropy wave is created, and
for non-zero n there is also a vorticity wave.

4.1. Weak shock and smooth area increase

We now consider the special case of a weak shock followed by a smooth area increase.
We therefore consider a shock for which M2

1 = 1 + ε with 0 < ε � 1 (i.e. the shock
is weak). From the Rankine–Hugoniot shock relations, the mean entropy increase
across the shock is

S̄2 − S̄1 = cv
2γ(γ − 1)

3(γ + 1)2
ε3 + · · · = cv

(γ2 − 1)

12γ2

(
p̄2 − p̄1

p̄1

)3

+ · · · , (4.15)

where S denotes the entropy and cv is the specific heat at constant volume. Hence the
mean entropy produced by the shock is negligible. A quasi-steady approach suggests

† In equation (39) on p. 1386 of Culick & Rogers (1983), p̄1/p̄2 should read p̄1ā2/(p̄2ā1).
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that the entropy perturbation just after the shock will be

S ′2 = cv
(γ2 − 1)

4γ2

p′2(p̄2 − p̄1)
2

p̄3
1

+ · · · = cp
γ − 1

γ + 1
ε2p̂2 + · · · , (4.16)

where cp is the specific heat at constant pressure (however we show below that this is
not correct in the stationary frame of reference). It therefore appears that the entropy
perturbation is also negligible. If the area increase is smooth, very little entropy will
be produced for the mean flow and for the perturbations. Conservation of mass across
the shock and along the area increase then gives m′ = 0 at the nozzle outlet. This
would imply that p̂ + û = 0, leading to a reflection coefficient for the downstream
acoustic wave of

A+

A−
=

1−M
1 +M

(4.17)

for n = 0, a form that has often been used in the literature (see for example Bloxsidge
et al. 1988). However, for n = 0, (4.14) gives

A+

A−
=

1− γM + (γ − 1)M2

1 + γM + (γ − 1)M2
(4.18)

and an apparent inconsistency. We are forced to conclude that the assumption of
negligible entropy perturbations must be incorrect.

To explain this apparent discrepancy we return to the approach used to derive
equations (4.8)–(4.10). In a frame of reference where the shock is stationary, just
downstream of the shock we have

û2,sh = −β, p̂2,sh = β, (4.19a)

ρ̂2,sh = β, S ′2,sh = cp
2(γ − 1)

γ + 1
βε2 (4.19b)

to first order in ε, where β = 2σ(dM1/dx)/(γ+ 1). This agrees with the relative orders
of magnitude suggested by (4.16). However, after reverting to the nozzle-fixed frame
of reference we find that to leading order

û2 =
2γ

γ + 1
βε, p̂2 = − 2γ

γ + 1
βε, (4.20a)

ρ̂2 = − 2γ

γ + 1
βε, S ′2 = cp

2(γ − 1)

γ + 1
βε2. (4.20b)

After the area increase we have m′ = e′ = 0 as before, but since the area change is
smooth we also have conservation of entropy. This leads to

û =
2γ

(γ + 1)(1−M2)
βε2, p̂ = − 2− 2(γ − 1)M2

(γ + 1)(1−M2)
βε2, (4.21a)

ρ̂ = − 2γ

(γ + 1)(1−M2)
βε2, S ′ = cp

2(γ − 1)

γ + 1
βε2 (4.21b)

to leading order at the nozzle outlet. The flow perturbations just after the shock are
much smaller in a stationary frame of reference than in a frame of reference moving
with the shock. Unless M ≈ 1 at the nozzle outlet, these flow perturbations are much
smaller still (by a factor ε) after the area increase and are then comparable with the
entropy disturbance. In fact from (4.12) and (4.14) it can be seen that even for M ≈ 1
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the entropy disturbance is comparable with the reflected acoustic wave. This therefore
explains why the entropy perturbations created by the shock should not be neglected.

5. Numerical results
In this section, we test the results of §§ 3 and 4 numerically to investigate the range of

validity of the asymptotic solutions. We consider a particular geometry of nozzle: near
its inlet and outlet the nozzle is taken to be the gap between two concentric cylinders,
specifically rmin(x) = a, rmax = b for 0 < x < 1

4
xmax and 3

4
xmax < x < xmax. Between

these sections the cross-sectional area of the nozzle decreases to a throat at x = 1
2
xmax;

we take rmin(x) = a+ 1
2
d[1+cos(4πx/xmax)] and rmax(x) = b− 1

2
d[1+cos(4πx/xmax)] for

1
4
xmax < x < 3

4
xmax. This is shown schematically in figures 1 and 2. In the numerical

calculations the values a = 0.18 m, b = 0.27 m and d = 0.032 m were used and the
inlet stagnation pressure and stagnation temperature were taken to be 216 kPa and
986 K respectively. (These values are based on the outlet of an aeroengine combustion
chamber at idle conditions.) The value of xmax was chosen to aid comparison with
the analytical results (this is discussed below). Typically xmax = 0.2 m was used for
the choked outlet case, and xmax = 0.4 m for the choked inlet.

The mean flow is assumed axisymmetric with w̄ = 0 and hence may be calculated
numerically on a two-dimensional grid. The numerical technique used involves a
finite volume method by which the imbalance of fluxes into the cells is used to update
nodal values of flow variables in a time-stepping manner until convergence to a steady
solution is obtained. Fluxes across cell boundaries are formed from nodal values in
a centred manner, implying a second-order-accurate formulation. The time-stepping
algorithm is based on an explicit method due to Denton (2002) which requires a very
low level of explicit numerical viscosity. The effect of this on the converged solution is
reduced further by the use of a deferred correction technique. The stagnation pressure
and stagnation temperature were fixed at the inlet (using the values stated above) with
v̄ set to be zero. At the outlet the (static) pressure was specified (typically 100 kPa).
Some mean-flow results are shown in figure 3. Here the average Mach number at each
axial location is plotted. Generally, a grid of 80 cells in the axial direction by 20 cells
in the radial direction was found to be sufficient. The solid, dashed and dotted lines
denotes outlet pressures of 100 kPa, 150 kPa and 200 kPa, respectively. In the first two
cases xmax was taken to be 0.2 m, whereas xmax = 0.4 m for other case. In these cases,
ahead of the shock the mean flow was found to vary little with r. Downstream of the
shock there was large radial variation, except for the third case.

The linearly perturbed flow was calculated in a similar way. A linearized Euler
method was used with the mean flow taken from the calculations described above.
The angular dependence of the perturbations is taken to be of the form einθ and
so the solution may be calculated on the same two-dimensional grid as the mean
flow, even though the perturbed velocity is three-dimensional. The disturbances are
assumed to have complex frequency ω and so the complex amplitudes of the solution
can be found using pseudo-time stepping. The choked outlet and choked inlet cases
differ in the boundary conditions applied at x = 0 and x = xmax, and are discussed in
§§ 5.1 and 5.2, respectively.

5.1. Choked outlet nozzle

Incident on the nozzle from upstream we impose either a downstream-travelling
acoustic wave, entropy wave or vorticity wave. These three cases are considered
separately below.
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Figure 3. Mach number of the mean flow averaged over r, using a grid of 80 × 20 cells. For the
solid and dashed lines, xmax = 0.2 m with the outlet pressure set at 100 kPa and 150 kPa, respectively.
The dotted line represents an outlet pressure of 200 kPa with xmax = 0.4 m.

5.1.1. Downstream acoustic wave

Provided the inlet is chosen to be sufficiently far upstream of the nozzle, the mean
flow will be uniform there and so linear perturbations will be a superposition of
disturbances of the form shown in (2.5). At the inlet we impose a downstream-
propagating acoustic wave with m = 0, and no entropy or vorticity disturbances. This
will potentially create reflected acoustic waves of all radial modes, not just m = 0.
Hence the full perturbation at the inlet is given by the ‘+’ form of (2.5) with m = 0
added to the ‘−’ form summed over m. For the range of frequencies that are considered
in these test cases, the radial harmonics corresponding to m > 0 are highly cut off. The
resulting rapid exponential decay in the upstream direction of the ‘−’ form (which can
be viewed as exponential growth in the downstream direction) and the corresponding
behaviour of the ‘+’ form leads to a poorly conditioned problem if the upstream
boundary conditions include m > 0. In order to maintain a well-conditioned problem,
we have assumed that any m > 0 modes generated at the downstream end will have
decayed to zero at the upstream end. The boundary condition there is thus imposed
only in terms of the m = 0 radial mode. This leads to the following numerical scheme:
at each pseudo-time step the solution at x = 0 was decomposed to find A+ and A−
(see below), the solution at x = 0 was then recalculated using (2.5) with this value of
A− but setting A+ to be a fixed constant and ignoring m > 0. The reflection coefficient
is then given by A−/A+ for the converged solution. The decomposition to find A+

and A− at the inlet is as follows: we multiple the pressure perturbation at x = 0

by rBn(r;m = 0)/
∫ b
a
rBn(r;m = 0)2 dr and numerically integrate across the radius.

This procedure gives the Bn(r;m = 0)-component of pressure perturbation, which we
denote by p′0. The Bn(r;m = 0)-component of velocity perturbation, u′0, is found in the
same way. From equation (2.5), p′0 = A+ +A− and u′0 = −k+A+/(ρ̄α+)− k−A−/(ρ̄α−).
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Figure 4. Magnitude and phase of the reflection coefficient for a choked nozzle with a downstream
acoustic wave at the inlet (n = 0). The circles, squares and diamonds represent numerical results
for outlet pressures of 100, 150 and 200 kPa respectively. For the circles and squares xmax = 0.2 m,
whereas xmax = 0.4 m for the diamonds. The solid lines denote analytical results. The absolute
difference between the numerical and analytical results is also shown.

(Note that the factors of eiωt+inθ in (2.5) are already assumed by the numerical
solution.) These two equations are then solved to find A+ and A−.

The appropriate boundary condition at the nozzle exit is that all waves are outward
propagating. Since we are interested in short nozzles and a choked mean flow,
separation is likely, owing to the high speed and the abrupt area expansion. Hence
(2.5) may not be a good approximation at the nozzle outlet. But as there will be
a region of supersonic flow just downstream of the throat, where all disturbances
will be carried downstream, we would expect that the perturbed flow at the nozzle
inlet is in fact independent of the flow in the divergent section of the choked nozzle.
Numerically this was indeed found to be the case. Typically, the boundary condition
used at x = xmax was simply to reduce all perturbed flow variables by a half at each
time step.

Figure 4 shows results for the magnitude and phase of the plane-wave (n = 0)
reflection coefficient for different mean flows (corresponding to the three cases shown
in figure 3). (In this and the subsequent figures, the value of L used in the definition
of Ω is xmax.) For the circles and squares the outlet pressure was 100 kPa and 150 kPa,
respectively, with xmax = 0.2 m. For comparison with the results in § 5.2, the diamonds
represent an outlet pressure of 200 kPa with xmax = 0.4 m. A grid of 80 × 20 cells
was used for each case and all other parameters were as stated at the beginning of
§ 5. We see that the results vary very little despite the large range in outlet pressure;
for all remaining figures in § 5.1 the value 100 kPa was used. Numerical calculations
of (3.22) give l ≈ 0.081 m. Hence in this and subsequent figures, the solid lines
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Figure 5. Magnitude and phase of the reflection coefficient for a choked nozzle with a downstream
acoustic wave at the inlet (n = 0). The circles and squares represent numerical results for grids of
80×20 and 160×40 cells, respectively, with xmax = 0.2 m. The diamonds represent numerical results
for a grid of 80× 20 cells with xmax = 0.4 m. The solid lines denote analytical results. The absolute
difference between the numerical and analytical results is also shown.

represent Marble & Candel’s boundary condition with an effective length of 0.08 m.
(The absolute difference between the numerical results and this analytical result is
also shown in the figure.) We see that there is very good agreement between the
numerical results and analysis, particularly at lower frequencies. The frequency of
combustion instabilities in gas turbines is typically less than 1 kHz. A typical length
scale over which choking occurs at the turbine inlet is 0.04 m, suggesting L = 0.08 m
is a suitable value for comparing the nozzle geometry used here with a real engine.
Taking the temperature to be around 1800 K, this implies that Ω/(2π) is typically
less than 0.1 in applications; h(x) close to the turbine inlet is typically around 0.08 m
hence the condition Ω2 < (c̄/c̄∗)2[(πL/h)2(1 −M2) − 9] for the narrow annular gap
assumption to be valid becomes Ω/(2π) < 0.16.

Figure 5 shows results for the reflection coefficient with n = 0 to demonstrate grid
dependence and the effect of xmax. The circles are the same as in the previous figure,
whereas the squares are for a grid of 160× 40 cells. There is little difference between
these results, showing that a grid of 80 × 20 cells is sufficient. The diamonds denote
results for 80×20 cells but with xmax = 0.4 m. For fixed Ω there is again little difference
between the results; however at fixed frequency agreement with the analysis is better
for xmax = 0.2 m. The gradient of the points in the plot of the absolute difference
between the analytical and numerical results appears to indicate that for Ω/(2π) above
about 0.1 the discrepancy is due an error in the analysis of order Ω2, as expected
since the analysis is only to order Ω. For lower frequencies the discrepancy appears
to be due to numerical errors that are approximately independent of frequency, these
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Figure 6. Magnitude and phase of the reflection coefficient for a choked nozzle with a downstream
acoustic wave at the inlet (n = 1). The circles and solid lines denote numerical and analytical results
respectively. The absolute difference between the numerical and analytical results is also shown.
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Figure 7. As figure 6 but for n = 4.



Reflection of circumferential modes in a choked nozzle 233

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

180

–90

0

90

–180

100

100

10–2

10–2 10–1
10–4

Ω/(2π)

| N
um

er
ic

al
–

an
al

yt
ic

al
|

P
ha

se
 (

de
g.

)
M

ag
ni

tu
de

Figure 8. Magnitude and phase of the reflection coefficient for a choked nozzle with an entropy
wave at the inlet (n = 0). The circles and solid lines denote numerical and analytical results
respectively. The absolute difference between the numerical and analytical results is also shown.

being smaller for the finer grid. In the subsequent figures in § 5.1, 80 × 20 cells were
used with xmax = 0.2 m.

Numerical results for the reflection coefficient (3.25) for the first azimuthal mode
(n = 1) are shown in figure 6. (Numerical difficulties were met at very low frequencies
and the results are shown for Ω/(2π) > 0.06.) The cutoff frequency is 440 Hz,
equivalent to Ω/(2π) = 0.15. Results for n = 4 are shown in figure 7. (Here results
are shown for Ω/(2π) > 0.22 due to numerical difficulties at very low frequencies.)
The cutoff frequency is now 1750 Hz corresponding to Ω/(2π) = 0.61. For both these
circumferential-mode cases there is again good agreement with the analysis. In real
annular gas turbines, the circumferential wavenumber of combustion instabilities is
low, for example Seume et al. (1997) report finding modes with n = 2 and n = 4 in
tests of a large industrial combustor.

5.1.2. Entropy wave

The reflection coefficient for an incident entropy wave was calculated in a similar
way. At each pseudo-time step in the numerical scheme, we decompose the solution
at x = 0 to find A+ and A−. We then recalculate the solution at x = 0 using (2.5) with
A+ set to zero and ignoring the higher-order radial modes. We also add an entropy
wave at x = 0 using (2.7) with AE set to be a fixed constant. For simplicity and
comparison with § 3 we take E(r) = Bn(r). The reflection coefficient is then A−/AE for
the converged solution. The outlet boundary condition is treated in the same way as
before.

Figure 8 shows results for the magnitude and phase of the reflection coefficient
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Figure 9. As figure 8 but for n = 1.

with n = 0. (The absolute difference between numerical and analytical results is
also shown.) Equivalent results for n = 1 are shown in figure 9. In both cases,
correspondence with the analysis is very good at low frequency but becomes poor
as the frequency increases. The agreement at higher frequencies is much worse here
than for the case of a downstream acoustic wave at the inlet (figures 4–7) because the
wavelengths for entropy waves are much shorter than for acoustic waves. Hence the
wavelength of the disturbances becomes comparable with nozzle dimensions at much
lower frequencies. Formally, we require Ω � M for the analytical results to be valid
(e.g. the small correction due to the effective length in (3.26) is O(Ω/M)). For the flow
considered here this means Ω � 0.17. We see in figures 8 and 9 that although the
magnitude of our low-frequency asymptotic form is inaccurate once Ω/(2π) ≈ 0.15,
the phase change and hence the nozzle effective length is accurate up to much higher
frequencies.

5.1.3. Vorticity wave

For comparison with § 3 we only consider the reflection coefficient for vorticity
waves of the ‘first type’ (see (2.8)). The boundary condition used at x = 0 was the
same as for the case of an incident entropy wave except that we apply (2.8) with AV a
fixed constant and V (r) = Bn(r). Now however the contribution of the vorticity wave
to u′ must be considered when finding A+ and A−. The reflection coefficient is then
c̄k−A−/(nα−AV ) for the converged solution.

For n = 0, it can easily be seen from the linearized Euler equations that only w′ will
be non-zero in the nozzle, hence there is no reflected acoustic wave. The disturbance
represents axisymmetric radial vorticity which remains uncoupled from the pressure
field even when accelerating through a nozzle. Figure 10 shows results for n = 1. As in
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Figure 10. Magnitude and phase of the reflection coefficient for a choked nozzle with a vorticity
wave at the inlet (n = 1). The circles and solid lines denote numerical and analytical results
respectively. The absolute difference between the numerical and analytical results is also shown.

figure 9, at low frequencies agreement between numerical results and the asymptotic
analysis is good, but it becomes poor as the frequency increases. The wavelengths
of vorticity waves are the same as for entropy waves (both are convected with the
mean flow) and hence the explanation for this poor agreement is as described in the
previous section.

5.2. Choked inlet nozzle

We now have a nozzle with no inlet disturbances and an acoustic wave propagating
upstream towards its outlet. In contrast to the previous cases, here the mean flow
downstream of the throat is important. In order for the flow perturbations downstream
of the nozzle to be in the form of those in § 2.1 we need the mean flow to be
approximately uniform there. Hence in the following, a nozzle length of 0.4 m and an
outlet pressure of 200 kPa were used on a grid of 80 × 20 cells (see figure 3). This
gives a more gradual expansion, reducing separation, and a weaker shock. For the
perturbations, at each pseudo-time step p′ and u′+ nw′/(k0r) at x = xmax were used to
find A+ and A− in a similar way to the inlet boundary treatment for the downstream
acoustic wave case in the choked outlet nozzle, described above. Here, by considering
u′+nw′/(k0r) instead of u′ we do not need to consider the vorticity and entropy waves
(see (2.5)–(2.8)). Then p′ and u′ + nw′/(k0r) were recalculated using this value of A−
but setting A+ to be a fixed constant. This was used to reset p′ and u′ at x = xmax
(using the original w′(xmax, r)). As before higher-order radial modes were ignored. To
allow entropy and vorticity waves to be present ρ′, w′ and v′ were not recalculated at
x = xmax. The reflection coefficient for the acoustic waves (i.e. the pressure reflection
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Figure 11. Magnitude and phase of the reflection coefficient for a choked nozzle with an upstream
acoustic wave at the outlet (n = 0). The circles denote numerical results. The solid and dashed lines
represent analytical results (applied at the throat and approximate shock position, respectively). The
absolute difference between the analytical result (applied at the throat) and the numerical results is
also shown.
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Figure 12. As figure 11 but for n = 1.
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coefficient) is then given by A+/A− for the converged solution. As mentioned in § 4
there should be no disturbances upstream of the shock, hence the inlet boundary
conditions are applied at each pseudo-time step by setting all perturbations to zero
at x = 0.

Numerical results for the reflection coefficient with n = 0 are shown in figure 11. The
solid and dashed lines represent the analytical result (4.14) applied at x = 0.2 m (the
throat) and x = 0.21 m (approximately the shock position), respectively. (The absolute
difference between the analytical result applied at x = 0.2 m and the numerical results
is also shown.) An effective length for the nozzle could be found in a way similar
to that in § 3. Figure 12 shows corresponding results for n = 1. As before, the cutoff
frequency of the nozzle is 440 Hz but as xmax = 0.4 m this is now equivalent to
Ω/(2π) = 0.31. In both figures we see that there is good agreement between the
numerical results and analysis. Applying (4.14) at the shock gives a slightly better
fit with the numerical results. As expected for a low-frequency asymptotic theory,
agreement deteriorates at higher frequencies. For n = 1 phase agreement is not as
good below cutoff. It is thought that this is due to the cutoff waves being more
sensitive to the non-uniformity in the mean flow. Results for n = 2 (not shown) were
similar, with phase agreement below cutoff being worse.

6. Conclusions
The reflection coefficient for a choked exit nozzle with either a downstream acoustic

wave, entropy wave or vorticity wave present has been investigated both analytically
and numerically. Although these three cases have been considered separately, the
reflected acoustic wave created by a combination of these can be derived by super-
position as the sum of the waves for the separate cases. An asymptotic analysis was
conducted for low frequency. The results show that the boundary condition for a
compact choked nozzle found by Marble & Candel may generally be applied even
when circumferential modes are present. The solution was extended to second order
in the compactness ratio and we showed that this correction may be expressed as an
effective length, which was found to be the same for all waves (except for the acoustic
wave near its cutoff frequency). This effective length is simply the mean velocity at
the inlet multiplied by the convection time to the throat. The asymptotic analysis was
found to give good agreement with the numerical calculations up to a non-dimensional
frequency (Ω/(2π)) of 0.3 for the acoustic wave and 0.15 for the convected waves.
This is as expected since the analysis becomes invalid when the wavelengths/(2π) be-
come comparable with the nozzle dimensions. The analysis is suitable for application
to combustion instabilities in gas turbines where this non-dimensional frequency is
typically less than 0.1.

The reflected acoustic, entropy and vorticity waves created by an upstream acoustic
wave in a choked inlet nozzle have also been found. It has been shown that the
entropy perturbation produced is not negligible, even if the shock is weak and the
following area increase is smooth. For circumferential modes, a vorticity wave is also
created. The asymptotic analysis was again found to agree with the numerical results
at low frequency.

This work was funded by the European Commission whose support is gratefully
acknowledged. It is part of the GROWTH programme, research project ICLEAC:
Instability Control of Low Emission Aero Engine Combustors (G4RD-CT2000-0215).
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Appendix. Cutoff frequencies for a narrow annular gap
Writing b = a(1 + ε), we consider the values of λn,m for ε � 1. The equation for

λn,m can be written as

dJn
dr

(α)
dYn
dr

(α(1 + ε))− dJn
dr

(α(1 + ε))
dYn
dr

(α) = 0, (A 1)

where α = λn,ma. We first suppose that α is order 1 and take α = α0 +α1ε+α2ε
2 +O(ε)3.

Substituting this into equation (A 1) and using Taylor expansions, the order-ε terms
are

α0[J
′
n(α0)Y

′′
n (α0)− J ′′n (α0)Y

′
n (α0)] = 0. (A 2)

Replacing J ′′n and Y ′′n using Bessel’s equation gives

α0(n
2/α2

0 − 1)[J ′n(α0)Yn(α0)− Jn(α0)Y
′
n (α0)] = 0. (A 3)

Using the property Jn(z)Y
′
n (z)− J ′n(z)Yn(z) = 2/(πz) (see for example Abramowitz &

Stegun 1965), we see that the only solution is α0 = n. Hence this must be the value
corresponding to m = 0, and for m > 1 the assumption that α is order 1 must be
incorrect. To find α1 for the m = 0 solution we consider the order-ε2 terms from (A 1),
which are

1
2
n(n+ 2α1)[J

′
n(n)Y

′′′
n (n)− J ′′′n (n)Y ′n (n)] = 0. (A 4)

Substituting for J ′′′n and Y ′′′n from the derivative of Bessel’s equation and using the
property quoted above it can be shown that J ′n(n)Y ′′′n (n) − J ′′′n (n)Y ′n (n) 6= 0, hence
α1 = − 1

2
n. Therefore

λn,0 = n/R + O(ε)2, (A 5)

where R = 1
2
(a + b). (Note however that this is only valid if n � ε−1 otherwise the

assumption that α is order 1 is not satisfied.)
For m > 1, α must be larger than order 1. Using the properties

J ′n(z) =
√

2/(πz)

(
− sin χ− 4n2 + 3

8z
cos χ+ O(z−2)

)
, (A 6a)

Y ′n (z) =
√

2/(πz)

(
cos χ− 4n2 + 3

8z
sin χ+ O(z−2)

)
, (A 6b)

where χ = z − 1
2
nπ− 1

4
π (see for example Abramowitz & Stegun 1965), in (A 1) gives

−[2/(πα)] sin αε+ O(α−3) = 0 (A 7)

(assuming that n2 � α). Hence the solutions are αε = π + O(α−2), 2π + O(α−2), . . .
giving

λn,m = mπ/(b− a) + O(ε). (A 8)
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